
Chapter 8

Sussman and Steele make
Scheme

T   L      . M
         
   q ,  -   
 L           
“  !”

N,    literally ,  ,    -
     L   
     ---   L . T 
 S ,   MT  G J S
 G L. S.

S     L  ,  , 
  fi        C
H       [31]. A,  Hz’
,             
fi :     -  
     ,  ,  
    . A     -
   .          j, ’
     ’     .

 S  S’ 1975 , SCHEME: An Interpreter For
Extended Lambda Calculus [77],     :

 ACTORS,   
  LSP- , SCHEME,    
,     ff, ,
  z. T    -
  .

T           , 

131

132 Sussman and Steele make Scheme

     LSP   -
          
-      
. T fi       “S” 
TS     ,  “S”     .

T fi   S M   700
      . T     
     ,  
 (EVALUATE|UNINTERRUPTIBLY),     
  M , ALARMCLOCK     
 L   TS  M. W   fi 
  “” —  1970      j
    ; ,      .

Closures, actors: all the same thing

W S  S  S,   -
-  S         -
    M    . O   
 ,      ,   
 ALPHA      LAMBDA    -
        “”. T,
“”    j      
    ,        
 . A        “-”
  “-”  .

M   ,   ALPHA,  
      APPLY   ,   
-   ! T     
         
 . N       
,         , 
   S       -
     .

Tail recursion

H   ,  fi S  -
  ,  fi  recursrive . 
     ,     fi
 :

(define fact (lambda (n)
(if (= n 0)

Tail recursion 133

1
(* n (fact (- n 1))))))

E     S,     .
N,     ,    , ’ 
 - ,   . Q   :

+ > (fact 3)
(if (= 3 0) 1 (* 3 (fact (- 3 1))))

E,  ’         -
  C’  ,      -
. N,   ,  ,  
 :

(* 3 (fact (- 3 1)))
(* 3 (fact 2))

L’     --  
:

(* 3 (if (= 2 0 1 (* 2 (fact (- 2 1))))))
(* 3 (* 2 (fact (- 2 1))))
(* 3 (* 2 (fact 1)))
(* 3 (* 2 (if (= 1 0) 1 (* 1 fact (- 1 1)))))
(* 3 (* 2 (* 1 (fact (- 1 1)))))
(* 3 (* 2 (* 1 (fact 0))))
(* 3 (* 2 (* 1 (if = 0 0) 1 (* 0 (fact - 0 1)))))
(* 3 (* 2 (* 1 (* 1 1))))
(* 3 (* 2 (* 1 1)))
(* 3 (* 2 1))
(* 3 2)
6

J       . T, 
        +  *,  
   . N, ,     
         FACT    
   fi       fi-
. H     ,    
 .       ,     -
 . S  S     -
   ; ,    j   
 ! H  :

(define fact
(lambda (n)

134 Sussman and Steele make Scheme

(labels ((fact1
(lambda (m ans)

(if (= m 0)
ans
(fact1 (- m 1) (* m ans))))))

(fact1 n 1))))

LABELS fi   ,       
LABEL    . S ’    , 
j        . F,  
“j”    :

+ > (fact 3)
(fact1 3 1)

A       fi,   j 
     FACT1  . L’     :

(if (= 3 0) 1 (fact1 (- 3 1) (* 3 1)))
(fact1 (- 3 1) (* 3 1))
(fact1 2 3)

—’    , j  ff -
    . A:

(if (= 2 0) 3 (fact1 (- 2 1) (* 2 3)))
(fact1 (- 2 1) (* 2 3))
(fact1 1 6)

S,    “  ”    -
. A ,     ,  fi   
   “fl fi”:

(if (= 1 0) 6 (fact1 (- 1 1) (* 1 6)))
(fact1 (- 1 1) (* 1 6))
(fact1 0 6)
(if (= 0 0) 6 (fact1 (- 0 1) (* 0 6)))
6

N       — “ ”
,  j        C’
 . S,       
           -
   ,     .

T  ff        
   . T fi     :

(* n (fact (- n 1)))

Lexical scope 135

     :

(fact1 (- m 1) (* m ans))

C    ff?      ,
   :    ,  --   last
  ;   fi ,       
        .     
        
     ,       tail recursion.

T    :        
         ’
    . T    tail call opti-
mization     S   . T   
     j      , -
,           
. A       -
   ,   ,  ’    
   “”        -
 -        ,  
.

Lexical scope

A        
  .     LSP 1.5     -
       ;  
  “ FUNARG ”       
  . T , L’      -
       . A q 
   L     (C L  
,          -
fi  DEFVAR):

+ > (defvar x 99)
X

+ > (defun getx () x)
GETX

+ > (getx)
99

+ > (let ((x 1)) (getx))
1

+ > (getx)
99

136 Sussman and Steele make Scheme

T LET  “”     X  -
 GETX,       LET   
   ;  ,      .

N     fi      
     ,      -
. T GETX        
X   ,       . T    -
,     q.     ,  
,  ,     . T -
:

+ > (defvar bumpit nil)
BUMPIT

+ > (defvar getit nil)
GETIT

+ > (let ((y 1))
(setq bumpit (lambda () (setq y (+ y 1))))
(setq getit (lambda () y)))

<FUNCTION (LAMBDA ()) {1003B53f3B}>
+ > (funcall bumpit)

2
+ > (funcall bumpit)

3
+ > (funcall getit)

3
+ > y

The variable Y is unbound.

T       ,     
   BUMPIT  GETIT   LET . LET
    ()  Y,    
. U FUNCALL,     L   -
       Y  (   FUNCALL
   ’  ). F,     Y  
 —Y     LET,   .    
 fi   Y   :       
 LET      ,     
, ,   . T  “”   
lexikos, “  ”. W  ,   
             
   . T         
 ,       
  j .

Shared namespace 137

Shared namespace

C  L  ,    FUNCALL   
L     . W  ? T  -
  C L,  ,  LSP 1.5  L 
 , ff     .  LSP 1.5,
     APVAL      
  EXPR. T        
 —     , ,  
  C L    :  
    ,     .
S,  C L:

+ > (setq a 42)
42

+ > a
42

+ > (setq b (lambda () 42))
<FUNCTION (LAMBDA ()) {53735B4B}>

+ > b
<FUNCTION (LAMBDA ()) {53735B4B}>

+ > (b)
debugger invoked on a UNDEFINED-FUNCTION….

+ > (defun b () 42)
B

+ > (b)
42

A   ,  ’ j  B     
    ; ,       B 
    .          
,   ,          ;
   FUNCALL  :

+ > (setq c (lambda () 42))
<FUNCTION (LAMBDA ()) {53735E6B}>

+ > (funcall c)
42

T           
 ,  G  P   q -
     [24]; ,  ffi    S 
  ,        
  :

+ > (define a 42)

138 Sussman and Steele make Scheme

a 42
+ > (define (a) 42)

a
<procedure a ()>

+ > (a)
42

Hygienic macros

W   M  DEFMACRO    
- . E,       
  ,         
     . C  :

(defmacro my-or (a b)
`(let ((tmp ,a))

(cond
(tmp tmp)
(t ,b))))

T   A    ,  B. B 
    ff,   A       
 . T , A  B     
 ,       ,  , 
 :

+ > (my-or (progn (print "A") t) (print "B"))
"A"
T

A ,   ,  ? W…   :

+ > (let ((tmp "B"))
(my-or (progn (print "A") nil) (print tmp)))

"A"
NIL
NIL

N,  ’ ! T fi    (nil),  
    “B”,  NIL. B ’     
    MACROEXPAND       :

+ > (macroexpand '(my-or (progn (print ``A'') nil) (print tmp)))
(LET ((TMP (PROGN (PRINT ``A'') NIL)))

(COND (TMP TMP) (T (PRINT TMP))))

Hygienic macros 139

T      (let ((tmp "B")) …)  
  :

(LET ((TMP ``B''))
(LET ((TMP (PROGN (PRINT ``A'') NIL)))

(COND (TMP TMP) (T (PRINT TMP)))))

W           ’ 
  . O L       
    “ ”. T   
            L , 
LSP 1.5      :    GENSYM
         fi 
   q      . T ,
    q     
       . F :

(defmacro my-or (a b)
(let ((tmp (gensym)))

`(let ((,tmp ,a))
(cond (,tmp ,tmp) (t ,b)))))

T   :

+ > (let ((tmp "B")) (my-or (progn (print "A") nil) (print tmp)))
"A"
"B"
"B"

(N    “B”        
        ,   
  ). T      MACROEXPAND 
    ,      :

+ > (macroexpand '(my-or (progn (print ``A'') nil) (print tmp)))
(LET ((#:G194 (PROGN (PRINT ``A'') NIL)))

(COND (#:G194 #:G194) (T (PRINT TMP))))

T     ,    #:G194,  
 ’ TMP   . A  . H,   
       L      
     ,     
         . Y   
    .

∗ ∗ ∗

140 Sussman and Steele make Scheme

S z   ,   ’  
     . W S  S
   M     ,  -
           j. S
    . P,     -
  1978,   R R  S [38],   -
. T         -
          
 —, S    . M 
     :

A SCHEME      
        .
T     
.

T    S    : SCHMAC 
-  M   S  
PDP-10—   S ,     SCHMAC
   M. T  , ,  M  -
     (-)   S ’ ,
 S     -fi     
   fi. T  , :

  , ,  SCHEME    -
  SCHEME,   -
   .

   S  fi MACRO. B 
  j        
q  qq,       . F
,       , ,   R R
R  S [1],     16 –  
S      . W’  1985 ,
  :

S        fi
  .

T      ,   
  ,   S  
“    ff ”. A  , 
   ,   R3 R  S [2]
      . T  -
 , fi,  1991,  R4 R   A
L S [3]      M.

Hygienic macros 141

W      S  
fi      ,
      - 
   .

F:  . T   (q -
  R4RS)          -
     ,       -
  define-syntax, let-syntax  letrec-syntax  -
      define, let  letrec. A 
       syntax-rules 
        . E 
’   , ’    my-or. H’    :

(define-syntax my-or
(syntax-rules ()

((my-or c1 c2)
(let ((tmp c1))

(cond (tmp tmp) (t c2)))))

E,      ’      ,
   pattern  (my-or c1 c2)  ,  
    (let)  . T’ ,   :

+ > (let ((tmp "B"))
(my-or (begin (display "A") #f) (display tmp)))

A
B

T   syntax-rules     S,  ’,  
            q L
 ’. S  j       -
,    :   ,  tmp   
,     q j;  ff,   
L’ GENSYM          
tmp     ’ . H,  GENSYM,
 ’    --fl   .
         S ,
      :

+ > (syntax->datum (expand
+ '(let ((tmp "B")) (my-or
+ (begin (display "A") #f) (display tmp)))))

'(let-values (((tmp) '"B"))
(let-values (((tmp) (begin (#%app display '"A") '#f)))

(if tmp (let-values () tmp)

142 Sussman and Steele make Scheme

(if '#t (let-values ()
(#%app display tmp)) (#%app void)))))

T’        ,
         tmp   
j tmp—  ,        . B -
,  tmp         
ff,        .

T’       “”  
 S’  ;     , 
fi    ,    , .
W       L’ , 
       ;  -ff  
             
  ’     q, qq  -
q       S’   
 .

Scheme in use

S       ,  
       . R  
       ,      
 7  [25]  —    “  -
”             
;  “ ”    . O   R7RS   
   S Rq    SRF [73].
S        
    SRF.

Structure and Interpretation of Computer Programs

P  -   SMT 
6.001.        
         
 . T  , S    C-
 P [4]       j MT
CS —      
          .

T   “SCP”  6.001   -   -
 .     j  q ,   
 “(+ 137 349) q 486”      -
 . E        
     ,    , ,

Scheme in use 143

    , . B       -
,          .
’          “SCP” .

∗ ∗ ∗

M      . L’  
     BASC , ’    
 ,     :

10 FOR I = 1 TO 10
20 PRINT "Hello, World!"
30 NEXT I

T    I       . 
’  ,  FOR   :

10 LET I = 1
20 PRINT "Hello, World!"
30 I = I + 1
40 IF I <= 10 THEN GOTO 20

R  “”  -   -
  ? T    . C 
       --,
      D’    , “ 
    ”. A      -
  ,  SCP       -
 (   S’ set! )    
        3 (  
’ 5 ). B  ,     S
         ,
   fl       
    . A     refer-
entially transparent, ,   ,    
.

E ,         
.    BASC,       
      :

(define (make-withdraw balance)
(lambda (amount)

(if (>= balance amount)
(begin (set! balance (- balance amount))

balance)
"Insufficient funds")))

144 Sussman and Steele make Scheme

   , fi  G   S:

+ > (define acct1 (make-withdraw 50))
+ > (acct1 10)

$5 = 40
+ > (acct1 10)

$6 = 30
+ > (acct1 50)

$7 = "Insufficient funds"

T   ,  ,    balance 
 make-withdraw,          -
    ’ . T   ,
           
   ;   fi,  ,      
    :

+ > (define acct2 (make-withdraw 100))
+ > (define acct3 (make-withdraw 50))
+ > (acct3 40)

$8 = 10
+ > (acct2 40)

$9 = 60
+ > (acct3 20)

$10 = "Insufficient funds"
+ > (acct2 20)

$11 = 40

B   , , “”     
   q  ,    
 (    ),    
        ff.

Racket

S    ,  R       -
    , S’  . S,
  ,        ,
      PLT .’  
       S
   . A      ,  
 , PLT S      
      ,    S ,
 WX W      ,   .

Scheme in use 145

T    “DS”   fl  S 
   PLT S.  2010,    -
 “R”    “DR”     ’
  . DR      
  ,        
     L,   -
       .  
    R  [66],    -
      .

S,   L,    ,  q
        ; 
, fi   S     S  -
          “
”. O   ,       -
   ,       ,
      ,      
    . S,  ,    
:

(define (f a b) (+ a b)) (f (f 1 (+ 2 3)) 4)

      “B S”    , 
 “10”. T’   ,     
       ,  ’    
  :

146 Sussman and Steele make Scheme

A   ,     ,   ,   10,
     “S”    :

DR            
 (+ 2 3),   ,     5,
    . W  “N”,  :

Scheme in use 147

A   , R     fi— -
 (f 1 5)  (+ 1 5),       -
        .
H “N”        
 6:

W    j (f 6 4),   “N” 
      :

A fi,          , 10:

148 Sussman and Steele make Scheme

R’   :   ,      .
   -     ,   -
        L   
        q  PD
    . N,    j  S -
      :      
      S ,     
A 60  -fi   “V”,
 .   z L’
   “    , fi    
  ,    .”

W S     R  
  L--- ( R,  , 
          
)  fi   ,      
    S A  . T S A 
 L    ’   , C L.

