Chapter 8

Sussman and Steele make
Scheme

The proliferation of Lisp systems was waiting for a reaction. Much
like the relative austerity of neoclassicism followed the overload of
frills from the baroque period, the never-ending addition of features
to Lisp almost begged for someone to stomp their foot down and yell
“enough is enough!”

Now, that did not literally happen, of course, but what did hap-
pen was the development of a new Lisp that would radically simplify
and clean up the last decade-and-a-half worth of Lisp work. This is
the Scheme language, created by MIT hackers Gerald Jay Sussman
and Guy L. Steele.

Scheme started as a small Lisp interpreter to, among others, help
understand the finer details of actor systems as described by Carl
Hewitt in his paper introducing the concept [31]. Actors, in Hewitz’
paper, are a highly precise concept but we can make do with a basic
definition here: think of them as self-contained computations that
are part of a bigger whole, run independently, and communicate
through the exchange of messages. A bunch of tiny computers talk-
ing to each other. If you think that this is a bit like objects, you're
right on the money but that’s a story for another time.

In Sussman and Steele’s 1975 paper, SCHEME: An Interpreter For
Extended Lambda Calculus [77], they introduce the system as:

Inspired by ACTORS, we have implemented an interpreter
for a LISP-like language, SCHEME, based on the lambda
calculus, but extended for side effects, multiprocessing,
and process synchronization. The purpose of this imple-
mentation is tutorial.

They go on to list some points that are important to them, which

131

132 Sussman and Steele make Scheme

mostly revolve around clarifying existing LISP constructs and sim-
plifying these concepts to land at a language that was exceptionally
well-suited for experimentation with programming semantics and
style. Their first version of the language was called “Schemer” but
ITS had a six character limit, so “Scheme” was the name that stuck.
This first version of Scheme was written in Maclisp in around 700
lines of code for the basic interpreter. This small bit of code contains
enough to implement a multiprocessing system, including critical
sections (EVALUATE | UNINTERRUPTIBLY), all hacked together on top
of a Maclisp function, ALARMCLOCK that can send timed interrupts
to Lisp programms on ITS and Multics. We should be fine using
the term “hack” here—in the 1970s it did not have the pejorative
meaning that it carries today; rather, it was a badge of honor.

Closures, actors: all the same thing

When Sussman and Steele implemented Scheme, actors were front-
of-mind and Scheme contained a little actor system on top of the ma-
chinery they built in Maclisp to support all that. One of the things
they added, to make things nice and transparent, was a function
called ALPHA that looked the same as LAMBDA but returned an anony-
mous actor instead of an anonymous function or “closure”. Then,
“invoking” this thing would just send the passed in arguments as
a message to the actor, which would return a message that was the
return value. A neat idea to make the step from “function-oriented”
programming to “actor-oriented” programming simpler.

Much to their surprise, when implementing ALPHA, they found
that the code was identical to APPLY in every sense, except for the
lower-level primitive it used! They stumbled upon somewhat of a
discovery that implicated that closures and actors are actually the
same thing. Not only proved this helpful in further understanding
actors, but it also validated their hypothesis that a small, lexically
scoped language like Scheme would make for a very powerful pro-
gramming language and computing research platform.

Tail recursion

However neat the multiprocessing, the first Scheme presentation fo-
cuses on computation, and specifically on recursrive computation. It
uses our friend the factorial function, which has a simple definition
in scheme:

(define fact (lambda (n)
(if (=n 0)

Tail recursion 133

1
(x* n (fact (- n 1))))))

Even without an introduction to Scheme, this should be pretty clear.
Now, if we run this manually, tracing the execution steps, we’d get
an ever-larger expansion, as it were. Quoting from the paper:

> (fact 3)
(if (=30) 1 (x 3 (fact (- 3 1))))

Essentially, what we're doing here is treating the function as a func-
tion in Church’ lambda calculus, and we simply expand by substi-
tution. Next, executing the conditional, the multiplication, and the
subtraction gives:

(x 3 (fact (- 3 1)))
(x 3 (fact 2))

Let’s continue to see where this lambda-calculus-like expansion leads
us:

(3 (Af (=201 (x 2 (fact (- 2 1))

(x 3 (x 2 (fact (- 2 1))

(x 3 (*x 2 (fact 1)))

(*x 3 (x2 (if (=10) 1 (x1 fact (-1 1))
(3 (x 2 (x1 (fact (- 1 NN

(* 3 (x 2 (x 1 (fact 0))))

(3 (*x2 (x1 (Af=00)1 (x 0 (fact - 0 1)))))
x3 (*x2(x1G11))N

(x 3 (x2 (x11)))

(x 3 (x 2 1))

(x 3 2)

6

Just simple substitution gave us the correct answer. Technically, we
could have done the same substitution process for + and *, but this
example is long enough. Note, though, that the expression gets longer
and longer before we got rid of all the FACT function calls that kept
appearing and we finally could start on a path towards simplifica-
tion. However a computer calculates this recursion, it needs to do
the same. It must keep all that state around, and that can be pro-
hibitively expensive. Sussman and Steele came up with an alterna-
tive that iterates instead; however, it looks like just a more complex
recursive function! Here it is:

(define fact
(lambda (n)

134 Sussman and Steele make Scheme

(labels ((fact1l
(lambda (m ans)
(if (= m 0)
ans
(factl (- m 1) (* m ans))))))
(factli n 1))))

LABELS defines a local function, pretty much the plural form of the
LABEL function we already encountered. So let’s go at it again, and
just do expansions to see where it leads us. First, we essentially
“jump” into the inner function:

> (fact 3)
(factl 3 1)

As you can see from the function definition, we now just proceed
with calls to the inner FACT1 local function. Let’s do a couple of steps:

(if (=3 0) 1 (factl (- 3 1) (x 3 1)))
(factl (- 3 1) (x 3 1))
(factl 2 3)

Interesting—we’re back where we started, just with different argu-
ments to the local function. Again:

(if (=2 0) 3 (factl (-2 1) (x 2 3)))
(factl (- 2 1) (x 2 3))
(factl 1 6)

Still, nothing of the “growing and shrinking” behaviour we saw be-
fore. And indeed, if we keep doing this, we finish with what might
be called a “flat profile”:

(if (=1 0) 6 (factl (-1 1) (x 16)))
(factl (-1 1) (x 1 6))

(factl 0 6)
(if (=0 0) 6 (factl (- 0 1) (x 0 6)))
6

Note that we did not do anything special—in “lambda calculus”
style, we just substituted expressions in a loose following of Church’s
original rules. Somehow, the second factorial function is setup so
that the state of the computation is not kept in an every-widening
and then shrinking expression, but in the two variables.

The biggest difference between the two versions is in how and
where they call themselves. The first one calls itself with this:

(x n (fact (- n 1)))

Lexical scope 135

and the second one with this:
(factl (- m 1) (x m ans))

Can you spot the difference? If you worked with recursion before,
the answer is simple: in the second version, the call-to-self is the last
thing to happen; in the first one, we call ourselves but then have to
take the answer and do a multiplication with it. It turns out that this
mechanical substitution process turns into iteration if the recursion
happens as the very last thing, and the term for this is tail recursion.

The beauty of this all: tail recursion can be detected by a smart
parser and turned from recursion into iteration because we don't
need to keep intermediate results. The process is called tail call opti-
mization and was part of Scheme from day one. That you can arrive
at such a result by just doggedly going through the steps of, essen-
tially, the rules of applying the lambda calculus is nothing short of
wonderful. Adding an accumulator to store intermediate results in-
stead of relying on, in most cases, the computer’s stack to do the
same is a “trick” that can turn many recursive functions into prop-
erly tail-recursive ones so that they can be run iteratively, using less
space.

Lexical scope

Another innovation was the elimination of dynamic scoping in favour
of lexical scoping. In the section on LISP 1.5 we saw how the dy-
namic scoping of variables could lead to confusion; confusion that
was dubbed “the FUNARG problem” and led to a lot of discussion
in academic circles. To recap, Lisp’s default way of looking up vari-
ables is to search in the execution environment. A quick example
in a modern Lisp that uses dynamic variables (Common Lisp in this
case, which uses dynamic binding by default for global variables de-
fined with DEFVAR):

> (defvar x 99)

X

> (defun getx () x)
GETX

> (getx)

99

> (let ((x 1)) (getx))
1

> (getx)

99

136 Sussman and Steele make Scheme

The LET binding “overwrites” the value of the variable X before call-
ing GETX, so during the invocation inside the LET binding the variable
is assigned that value; after it, the old value pops back up.

Note that you can only figure out what will happen from the
source code by tracing through it, like a sort of human single-stepping
debugger. The GETX code itself does not give any indication where
X could be set, it can happen all over the place. This is a trivial ex-
ample, but this gets messy quick. It has some powerful uses, but its
counterpart, lexical binding, is overall simpler to follow. To demon-
strate:

> (defvar bumpit nil)
BUMPIT

> (defvar getit nil)
GETIT

> (let ((y 1))

(setq bumpit (lambda () (setq y (+ y 1))))
(setq getit (lambda () y)))
<FUNCTION (LAMBDA ()) {1003B53f3B}>

> (funcall bumpit)

2

> (funcall bumpit)

3

> (funcall getit)

3

>y

The variable Y is unbound.

The code is a bit more complex here, but essentially we store two
lambda functions in BUMPIT and GETIT inside the LET binding. LET
has a lexically scoped (local) variable Y, which these functions both
access. Using FUNCALL, we invoke the two Lambda functions a cou-
ple of times seeing the value of Y change (why we need FUNCALL
here is something we’ll get to). Finally, we try to access Y and get
an error—Y only exists inside the LET, not outside it. It is now trivial
to figure out how Y can be changed: reading that little bit of code in
the LET is all you need to do, anything else cannot possible access
or, worse, change the value. The term “lexical” comes from greek
lexikos, “pertaining to words”. With lexical scoping, the words in
the code tell you the scope of a variable and you can safely contain
what happens to it. This is exactly the sort of thing you want when
implementing actors, which are supposed to encapsulate their state
much like objects do.

Shared namespace 137

Shared namespace

Consider the Lisp code above, where we used FUNCALL to invoke a
Lambda expression stored in a variable. Why is that? This was an ex-
ample in Common Lisp, which has, like LISP 1.5 and most Lisps that
followed it, different storage for functions and variables. In LISP 1.5,
variable values are stored as APVALs on a single association list and
functions as EXPRs. The system had some rules for where to look
things up—depending on how a symbol was used, etcetera, but later
systems like Common Lisp made this separation explicit: values are
values and functions are functions, and they are treated separately.
So, in Common Lisp:

= > (setq a 42)
42
= > 3
42
1w > (setq b (lambda () 42))
<FUNCTION (LAMBDA ()) {53735B4B}>
I > b
<FUNCTION (LAMBDA ()) {53735B4B}>
= > (b)
debugger invoked on a UNDEFINED-FUNCTION...
iz > (defun b () 42)
B
= > (b)
42

As you can see, we can't just assign B a lambda expression and then
execute it as a function; conversely, we can use the same name B as
a function and execute it. If we want to cross the realm from data to
function, as it were, we can do that but need to make that explicit;
this is where FUNCALL comes in:

1w > (setq ¢ (lambda () 42))
<FUNCTION (LAMBDA ()) {53735E6B}>
1= > (funcall c)
42

There are tons of technical arguments around the pros and cons of
separate namespaces, and Gabriel and Pitman did a quite techni-
cal review of the topic [24]; here, it suffices to say that Scheme took
the simplest option, there is only one namespace and functions and
variables share it:

iz > (define a 42)

138 Sussman and Steele make Scheme

a 42

> (define (a) 42)
a

<procedure a ()>
> (a)

42

Hygienic macros

We saw before that Maclisp introduced DEFMACRO to help users write
high-level code. Essentially, macros allow you to splice code into
templates of sorts, and that comes with problems if the splicer and
the splicee use the same names. Consider this code:

(defmacro my-or (a b)
“(let ((tmp ,a))

(cond
(tmp tmp)
(t ,b))))

This macro returns A if it is true, otherwise B. Because either
clause can have side effects, it evaluates A once and keeps it in a local
temporary variable. This way, A and B are both evaluated not more
than once, which is what a caller would expect, and indeed, things
work nicely:

> (my-or (progn (print "A") t) (print "B"))
IIAII
T

All good, nothing to see, you say? Well... what about this:

> (let ((tmp "B"))
(my-or (progn (print "A") nil) (print tmp)))
wp
NIL
NIL

Now, that wasn't expected! The first clause returns false (nil), so the
second clause should print “B”, not NIL. But it’s not hard to spot the
error when we ask MACROEXPAND to tell us what is going on:

> (macroexpand '(my-or (progn (print ““A'') nil) (print tmp)))
(LET ((TMP (PROGN (PRINT "“A'') NIL)))
(COND (TMP TMP) (T (PRINT TMP))))

Hygienic macros 139

This code gets spliced into our (1let ((tmp "B")) ..) resulting in
the complete expansion:

(LET ((TMP “"B''"))
(LET ((TMP (PROGN (PRINT ~“"A'') NIL)))
(COND (TMP TMP) (T (PRINT TMP)))))

We used the same variable name as the macro and now it’s getting
all mixed up. Old Lispers probably called this code dirty and the
name that stuck was “unhygienic macros”. The problem of splicing
code in code and getting names mixed up is as old as Lisp itself, and
LISP 1.5 already had a solution for this: a function named GENSYM
which generates a special symbol that can not be defined otherwise
and returns a unique symbol every time it gets called. This way,
macro writers can generate unique variable names and thus wash
them clean and return them to proper hygience. For example:

(defmacro my-or (a b)
(let ((tmp (gensym)))
“(let ((,tmp ,a))
(cond (,tmp ,tmp) (¢t ,b)))))

This works much better:

> (let ((tmp "B")) (my-or (progn (print "A") nil) (print tmp)))
IIAII
IIBII
IIBII

(Note that the second “B” is the return value of the print function
which becomes the return value of the whole expression, it is still
executed only once). This is what we want and MACROEXPAND shows
us that with this version, there is no risk of confusion:

> (macroexpand '(my-or (progn (print ““A'') nil) (print tmp)))
(LET ((#:G194 (PROGN (PRINT ~“A'') NIL)))
(COND (#:G194 #:G194) (T (PRINT TMP))))

The macro uses the generated symbol, in this case #:G194, and our
calling code’s TMP is left alone. All is good. However, if you followed
along closely you can see that while Lisp changed in how it allows us
to do this sort of programming, nasty surprises keep lurking around
the corner and it is never completely safe or clean. You need to pay
attention to these little gotchas.

* % %

140 Sussman and Steele make Scheme

Scheme emphasizes safety and cleanliness, as you can’t do language
research when the foundation is messy. While Sussman and Steele
use plenty of Maclisp macros to implement their language, the lan-
guageitself and the paper presenting it is silent on the subject. Scheme
did not come with macros. Probably, people asked about this be-
cause in 1978, in the Revised Report on Scheme [38], macros are in-
troduced. The revised report is also more normative than the origi-
nal paper and starts talking about mandatory and optional parts of
the language—clearly, Scheme was spreading its wings. Macros are
introduced with a lot of optionality:

A SCHEME implementation should have one or more
ways for the user to extend the inventory of magic words.
The methods provided will vary from implementation to
implementation.

The revised version of Scheme comes with two macros: SCHMAC is
system-dependent for the Maclisp implementation of Scheme on the
PDP-10—while ostensibly a Scheme facility, the body of a SCHMAC
macro is in Maclisp. This makes sense, probably, as Maclisp has ac-
cess to a lot of (system-dependent) things that Scheme doesn’t have,
so Scheme can be extended in system-specific ways that are not in
scope of a specification. The authors observe, though:

It so happens, however, that SCHEME is a good meta-
language for SCHEME, and so introducing meta-circularity
provides no serious problems.

when introducing the Scheme macro definition MACRO. Both special
forms are just introduced with their syntax and some syntax for
quoting and quasiquoting, but no word about the issues above. For
that, we need to step forward in time, again, to the Revised Revised
Report on Scheme [1], now by a whopping 16 authors—it looks like
Scheme was gaining more and more traction. We’re in 1985 now,
and we read:

Scheme does not have any standard facility for defining
new special forms.

The document goes on to list problems with macros, like the variable
capture problem above, and recommends Scheme implementers to
“continue to experiment with different solutions”. A year later, the
third revision is published, but the Revised® Report on Scheme [2]
does not change its stance on macros. The experimentation contin-
ues until, finally, in 1991, the Revised* Report on the Algorithmic
Language Scheme [3] comes with an appendix on Macros.

Hygienic macros 141

With the appendix to this report Scheme becomes the
first programming language to support hygienic macros,
which permit the syntax of a block-structured language
to be extended reliably.

Finally: hygienic macros. This fourth revision (colloquially abbrevi-
ated to R4RS) introduces a way to extend the language in a macro-
like way while avoiding its pitfalls, by introducing a new set of spe-
cial forms define-syntax, let-syntax and letrec-syntax to es-
sentially be the macro versions of define, let and letrec. All of
them invoke a pattern matching language called syntax-rules that
matches up the code to be expanded with expansions. Even though
it’s a trivial example, let’s go back to my-or. Here’s how it looks like:

(define-syntax my-or
(syntax-rules ()
((my-or c1 c2)
(let ((tmp c1))
(cond (tmp tmp) (t c2)))))

Essentially, what this says is that there’s a new rule for the intepreter,
and whenever a pattern like (my-or c1 c2) is encountered, it needs
tobereplaced with the (1et) below it. That’s all, and it works:

> (let ((tmp "B"))

(my-or (begin (display "A") #f) (display tmp)))
A
B

The body of syntax-rules looks a bit like Scheme, butisn’t, and that
is a good part of the reason why this works and the equivalent Lisp
version doesn’t. Syntax rules just pattern match and do a lexical ex-
pansion, with a little twist: anything created new, like tmp in our let
binding, is a newly created unique object; in effect, a mechanism like
Lisp’s GENSYM is working under the hood to ensure that the various
tmp variables in the example don’t clash. However, unlike GENSYM,
things don’t get replaced with on-the-fly generated symbol names.
If we expand our code using the mechanism that Scheme provides,
something that should not work comes out:

> (syntax->datum (expand
'(let ((tmp "B")) (my-or
(begin (display "A") #f) (display tmp)))))
'(let-values (((tmp) '"B"))
(let-values (((tmp) (begin (#%app display '"A") '#£)))
(if tmp (let-values () tmp)

142 Sussman and Steele make Scheme

(if '#t (let-values ()
(#%app display tmp)) (#%app void)))))

There’s some internals of the scheme implementation peeking through,
but the most surprising thing is that all the tmp variables print as
just tmp—for the reader, there is no way to keep them apart. But un-
derneath, each tmp lives in its own scope and they are completely
different, as the fact that the example works shows.

There’s a lot going on around the “simple” pattern matching
of Scheme’s syntax rules; you can have multiple patterns, declare
fixed elements in your syntax, have variable argument lists, etcetera.
While not completely as powerful as regular Lisps’ macro facilities, it
is almost as powerful and usually powerful enough; the trade-off of a
little bit of lost expressive power for a ton of safety and a clean macro
model that doesn’t rely on mixes of quoting, quasiquoting and un-
quoting is probably a good one for Scheme’s purposes of simplicity
and clarity.

Scheme in use

Scheme found widespread use in teaching and research, which was
pretty much the stated goal of its creation. Reports with revisions
have been coming out at a regular pace, and at the time of writing
the 7th revision [25] is current—this revision is called “the small edi-
tion” as it trimmed a lot of bloat that the language accrued over the
years; a “large edition” is in the works. On top of R7RS there is an
extensive list of Scheme Requests for Implementation or SRFIs [73].
Scheme implementations will often implement a base standard and
then a list of SRFIs.

Structure and Interpretation of Computer Programs

Probably still the most widely-known use of Scheme was MIT course
6.001. an introductory course for undergraduates into the structure
and interpretation of computer programs that was taught for over
twenty years. The course book, Structure and Interpretation of Com-
puter Programs [4] shows on many more bookshelves than just MIT
CompSci alumni—many professional developers who take a deep
interest in their craft get the book and work through it.

To say that “SICP” and 6.001 are a fast-paced course is under-
stating it. In the time of just one quick semester, students were taken
from “(+ 137 349) equals 486" to implementing a compiler for reg-
ister machines. Even for software developers with a decade or more
of professional experience under their belts, the book is fast, deep,

Scheme in use 143

and more often than not, hard. But on top of all that shines ele-
gance, where simple concepts like lexical closures are put to work.
It’s worth showing a little bit of the elegance that “SICP” teaches.

* % %

Most programming books start with mutating state. Let’s say the
aspiring coder picked up a BASIC book, there’s a good chance that
early on, something like this will happen:

10 FOR I = 1 TO 10
20 PRINT "Hello, World!"
30 NEXT I

The loop counter variable I here is assigned over and over again. It
doesn’t show immediately, but FOR is shorthand for:

10 LET I =1

20 PRINT "Hello, World!"
30I =TI +1

40 IF I <= 10 THEN GOTO 20

Remember how we “proved” that tail-recursion was iterative by sim-
ply applying substitution? That will not work here. Changing the
value of a variable breaks the model of computation-by-substitution,
it comes as it were with Dante’s warning in his Inferno, “all hope
abandon ye who enter here”. A much more complex model of com-
putation is needed, and SICP therefore does not treat the whole con-
cept (packaged neatly in Scheme’s set! function) until the reader is
ready for somewhat advanced topics well into chapter 3 (out of the
book’s 5 chapters). By that time, the student has enhanced Scheme
with a simple type system and implemented dispatching on types,
then added a flexible way of computing with complex and rational
numbers using such a system. All using functions that are refer-
entially transparent, or, in other words, work with the substitution
model.

Even then, the authors are careful to build something elegant and
reusable. If you know BASIC, try to envision this example from the
book in such a completely imperative language:

(define (make-withdraw balance)
(lambda (amount)
(if (>= balance amount)
(begin (set! balance (- balance amount))
balance)
"Insufficient funds")))

144 Sussman and Steele make Scheme

to show that it works, we fire up the Guile implementation of Scheme:

> (define acctl (make-withdraw 50))
> (acctl 10)

$5 = 40

> (acctl 10)

$6 = 30

> (acctl 50)

$7 = "Insufficient funds"

The mutated state here, of course, is the original balance argument
to make-withdraw, and it remains visible as the closure of the re-
turned lambda for the latter’s lifetime. There is assignment involved,
but it is encapsulated in a nicely wrapped package instead of being
out in the open; the big benefit, of course, is that we can have as
many accounts as we want:

> (define acct2 (make-withdraw 100))
> (define acct3 (make-withdraw 50))
> (acct3 40)

$8 = 10
> (acct2 40)
$9 = 60

> (acct3 20)

$10 = "Insufficient funds"
> (acct2 20)

$11 = 40

By turning something as, well, “basic” as mutable variables into an
advanced problem that requires a newer, more complex model of
computation (also explained in the book), the authors make sure that
even seasoned developers think twice about such dangerous stuff.

Racket

Scheme is like a scalpel, and Racket hones that scalpel to be a pre-
cise tool for language research, Scheme’s original focus. Scheme,
as a language, got something of a following in educational circles,
and one of the implementations was PLT Inc.’s implementation that
purely focused on producing pedagogical materials using Scheme
as a teaching language. As the focus was on the materials, not the
actual engine, PLT Scheme was essentially an environment built out
of a collection of open source parts, like an existing Scheme library,
the WX Widget library to add a graphical environment, and so on.

Scheme in use 145

The engine was called “DrScheme” and the flavour of Scheme it
implemented was called PLT Scheme. In 2010, the language was re-
named “Racket” and the engine “DrRacket” and that is what we're
talking about today. DrRacket is available for pretty much every
platform under the sun, and gives an excellent and very user friendly
integrated development environment for writing Lisp, both for ed-
ucational purposes as well as general purpose programming. It is
freely available from the Racket website [66], and you are encour-
aged to install it and follow along.

Scheme, like any Lisp, easily morphs into other things, so quickly
new languages were added to support the pedagogical mission; for
example, five levels of Scheme starting with a small Scheme for be-
ginners building up all the way to advanced topics like “mutable
state”. On top of this, tools were added to help students under-
stand what was happening, like an algebraic stepper that lets you,
patiently like only a computer can do, step one by one through code
showing exactly what is going on. Say, for example, we have a simple
program:

(define (f ab) (+ ab)) (f (£ 1 (+ 2 3)) 4

If we load this in the “Beginning Student” language and run it, we
get “10”. That’s not extremely interesting, but the stepper allows us
to see exactly how the answer is obtained, and that’s a fun and useful
thing to show:

146 Sussman and Steele make Scheme

File Edit View Language Racket Insert Scripts Tabs Help
Untitledv (define ...)v B[] step [P] Check Syntax 4 Run|> stop [l

P (define (f a b) (+ a b))
2|1 (F (f1 (+2 3)) 4

Welcome to DrRacket, version 8.10 [cs].
Language: Beginning Student; memory limit: 128 MB.

10

>
All expressions are covered \ Show next time? €
Beginning Student v 4:2 sg6.12MB[| &

As you can see, we have the program entered, we ran it, we got 10,
but now we hit the “Step” button in the toolbar:

File Edit Tabs Help

Idd Aq Previous | selected ¢/ Next[]| Nextcallph endpP| 1/6 2
(define (f a b) (+ a b)) .(define (f ab) (+ab))
(f (f1 (+23)) 4) (f (f15) 4

DrRacket opens up a new window and shows us that it started by
evaluating (+ 2 3), highlighted in green, and replaced that with 5,
the result of that expression. We hit “Next”, and get:

Scheme in use 147

File Edit Tabs Help

Idd A Previous [Selected ¢/ Next[»] Nextcall[pA EndpPl 2/6 ﬁ
(define (f a b) (+ a b)) .(define (f ab) (+ ab))
(f (f 15) 4) (f (=15) 4

As you can see, Racket now expands the function definition—it re-
places (£ 1 5) with (+ 1 5), which is the sort of mechanical re-
placement action we read about when discussing lambda calculus.
Hitting “Next” again shows the expected replacement of that code
with 6:

File Edit Tabs Help

Idd A Previous | Selected ¢ Next[»] Nextcall[ph Endpp| 3/6 2o
(define (f a b) (+ a b)) (define (f a b) (+ a b))
(f (+ 15) 4) »t 6 4)

Which leaves us with just (f 6 4), which another “Next” expands
to the body of our little function:

File Edit Tabs Help

Idd A Previous [Selected ¢/ Next[»] Nextcall[pA Endpp| 4/6 ﬁ
(define (f a b) (+ a b)) ’(define (fab) (+ab))
(f 6 4) (+ 6 4)

And finally, we take the step to arrive at the expected answer, 10:

148 Sussman and Steele make Scheme

File Edit Tabs Help

Idd A Pprevious [Selected ¢/ Next[»] Nextcallpph EndpP] 5/6 ‘?i:)o
(define (f a b) (+ a b)) (define (f a b) (+ a b))
(+ 6 4) 10

Racket’s power is twofold: at every corner, it tries to be your guide.
It comes with built-in debugging tools like the stepper, but also nor-
mally has much nicer error messages than most Lisps out there and
comes with a development environment that does not require a PhD
in computer science to operate. Next, it is not just a Scheme imple-
mentation but more of a language platform: not only can it run a
whole list of variations on the Scheme theme, but it even comes with
an Algol 60 implementation and domain-specific languages like “Video”,
for programmatically manipulating movies. Itreally epitomizes Lisp’s
core philosophy of “if you have a problem, first create a language to
solve the problem, then solve the problem.”

Where Scheme and its implementations like Racket are usually
targeted at Lisp-in-the-small (although Racket, for example, comes
with its own powerful module system to allow for building larger
systems) and specific like a scalpel, some people want to build in
the large and like Swiss Army knives better. The Swiss Army knife
of Lisp is the system we’ll look at next, Common Lisp.

